Title of article :
Involvement of ILK/ERK1/2 and ILK/p38 pathways in mediating the enhanced osteoblast differentiation by micro/nanotopography
Author/Authors :
Wang، نويسنده , , Wei and Liu، نويسنده , , Qian and Zhang، نويسنده , , Yumei and Zhao، نويسنده , , Lingzhou and Zou، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Abstract :
The hierarchical micro/nanotextured topography (MNT) on titanium (Ti) implant surface significantly enhances osteoblast differentiation. We have demonstrated that integrin-linked kinase (ILK) is a key underlying signal molecule and β-catenin is one of its downstream mediators in MNT-regulated osteoblast behavior. Here we propose that mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase 1/2 (ERK1/2), p38 and c-Jun NH2-terminal kinase (JNK), are other mediators downstream of ILK, and this study aims to confirm this. Firstly, the levels of ILK and MAPK activity in MG63 cells on MNT are examined by Western blot analysis. The ILK, ERK1/2 and p38 signals are significantly up-regulated by MNT, whereas the JNK activity is undetectable by Western blot. The MG63 cell morphology, proliferation and differentiation are studied in the absence and presence of the MAPK subgroup inhibitors to confirm their roles in cell functions on the Ti surface. The MAPK subgroup inhibitors obviously change the cell shape and depress cell proliferation. Blocking the ERK1/2 or p38 signaling, but not the JNK signaling, significantly down-regulates the cell osteogenesis-related gene expression, ALP production, collagen secretion and matrix mineralization. Afterwards, the ILK expression is down-regulated using ILK-specific siRNA (ILKsi) and then the MAPK activity is determined. ILKsi significantly attenuates the phosphorylated ERK1/2 and p38 levels on MNT, explicitly demonstrating that the ERK1/2 and p38 signalings are downstream effectors of ILK. In conclusion, these data demonstrate that both ILK/ERK1/2 and ILK/p38 pathways are involved in the mechanisms mediating the enhanced osteoblast differentiation by biomaterial surface topography, hopefully directing the biomaterial modification and biofunctionalization.
Keywords :
Integrin-linked kinase , Osteoblast , Titanium , Micro/nanotextured topography , Mitogen-activated protein kinases
Journal title :
Acta Biomaterialia
Journal title :
Acta Biomaterialia