Title of article
The quantum Hall effect in graphene from a lattice perspective
Author/Authors
Bernevig، نويسنده , , B. Andrei and Hughes، نويسنده , , Taylor L. and Zhang، نويسنده , , Shou-Cheng، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2007
Pages
7
From page
20
To page
26
Abstract
The recent quantum Hall experiments in graphene have confirmed the theoretically well-understood picture of the quantum Hall conductance in fermion systems with continuum Dirac spectrum. In this paper we take into account the lattice, and perform an exact diagonalization of the Landau problem on the hexagonal lattice. At very large magnetic fields the continuum Dirac argument fails completely and the Hall conductance, given by the number of edge states present in the bulk gaps of the spectrum, is dominated by lattice effects. As the field is lowered, the experimentally observed situation is recovered through a phenomenon which we call band collapse. As a corollary, for low magnetic field, graphene will exhibit two qualitatively different quantum Hall effects (QHEs): at low filling, the QHE will be dominated by the “relativistic” Dirac spectrum and the Hall conductance will be odd-integer; above a certain filling, the QHE will be dominated by a non-relativistic spectrum, and the Hall conductance will span all integers, even and odd.
Keywords
D. Edge states , A. Graphene , D. Quantum hall effect
Journal title
Solid State Communications
Serial Year
2007
Journal title
Solid State Communications
Record number
1763700
Link To Document