Title of article :
Invariance relations for random walks on hexagonal lattices
Author/Authors :
Garza-Lَpez، نويسنده , , Roberto A. and Kozak، نويسنده , , John J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
6
From page :
365
To page :
370
Abstract :
We consider the problem of random walks on finite, N=(2k×2k) hexagonal lattices with a single, deep trap, and subject to periodic boundary conditions. An exact expression is obtained for calculating the invariance relation linking the set M of nth nearest-neighbor sites surrounding the trapping site, viz.,(2M−3)N−{2M+6+3M[ln(M/6)/ln(2)]}.This result may be used to obtain approximate values of the overall mean walklength 〈n〉. The results are compared with exact numerical results, with the predictions of the asymptotic expression of Montroll and Weiss, and linked to current studies in nanotube chemistry.
Journal title :
Chemical Physics Letters
Serial Year :
2003
Journal title :
Chemical Physics Letters
Record number :
1783618
Link To Document :
بازگشت