Title of article :
A novel amperometric glucose biosensor based on poly(glycidyl methacrylate-co-(3-thienylmethylmethacrylate))
Author/Authors :
Karagollu، نويسنده , , Osman and Gorur، نويسنده , , Mesut and Turkan، نويسنده , , Ali and Sengez، نويسنده , , Busra and Gode، نويسنده , , Fethiye and Yilmaz، نويسنده , , Faruk، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2013
Pages :
6
From page :
725
To page :
730
Abstract :
Two novel glucose oxidase (GOx) enzyme electrodes based on the copolymer of glycidyl methacrylate with 3-thienylmethyl methacrylate (poly(GMA-co-MTM)) with and without polypyrrole (PPyr) coating were prepared and employed in the amperometric determination of glucose levels. The effect of PPyr coating on the electrode properties was investigated in detail. Cyclic voltammetry studies showed that electrical conductivity of electrode B with PPyr coating (poly(GMA-co-MTM)/GOx/PPyr) was substantially higher than that of electrode A (poly(GMA-co-MTM)/GOx). On the other hand, electrode A showed better results in terms of sensitivity (10 nA/mM), limit of detection (50.2 μM), and response time (5 s). Electrodes A and B gave linear responses to the glucose concentrations in the range of 2–20 and 2–14 mM, respectively. The ranges of linearity for both enzyme electrodes are sufficient for the determination of physiological glucose concentrations in human blood. Moreover, PPyr coating of electrode B did not result in further stabilization of the enzyme electrode.
Keywords :
Amperometric biosensor , Glucose oxidase , Covalent immobilization , Enzyme-modified electrode
Journal title :
Current Applied Physics
Serial Year :
2013
Journal title :
Current Applied Physics
Record number :
1790463
Link To Document :
بازگشت