Title of article :
Rapid and label-free detection of H5N1 virus using carbon nanotube network field effect transistor
Author/Authors :
Thu، نويسنده , , Vu Van and Tam، نويسنده , , Phuong Dinh and Dung، نويسنده , , Phuong Trung، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2013
Pages :
5
From page :
1311
To page :
1315
Abstract :
DNA hybridization-based detection techniques are widely used in genetics, medicine, and drug discovery. However, the current techniques are usually based on labels and reagents that are time consuming and complex to implement. In this study, we report a label-free DNA sensor based on single-walled carbon nanotube field effect transistor (SWCNTFET) for selective DNA hybridization detection of H5N1 virus. A network of single-walled carbon nanotubes (SWCNTs) acts as the conductor channel. Probe DNA sequences were adsorbed onto SWCNTs. The developed DNA sensor can effectively detect full-complementary DNA with concentration as low as 1.25 pM. The sensitivity of the DNA sensor reached approximately 0.28 nM/nA. The effect of the parameters, including DNA probe concentration, its complementary concentration, mismatched sequence, and hybridization time, on the sensor response was also studied. The results showed the potential application of the DNA sensor for medical, environmental, and epidemic detection.
Keywords :
DNA sensor , Carbon nanotubes , SWCNTFET , DNA
Journal title :
Current Applied Physics
Serial Year :
2013
Journal title :
Current Applied Physics
Record number :
1790937
Link To Document :
بازگشت