Title of article :
Structural transformations in cubic Dy2O3 at high pressures
Author/Authors :
Jiang، نويسنده , , Sheng and Liu، نويسنده , , Jing and Lin، نويسنده , , Chuanlong and Bai، نويسنده , , Ligang and Zhang، نويسنده , , Yufeng and Li، نويسنده , , Xiaodong and Li، نويسنده , , Yanchun and Tang، نويسنده , , Lingyun and Wang، نويسنده , , Hua، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
5
From page :
37
To page :
41
Abstract :
The structural stability of cubic Dy2O3 under high pressure has been investigated using synchrotron radiation in a diamond anvil cell up to 49.0 GPa. The diffraction data reveals the cubic phase undergoes two successive phase transitions on compression. The phase transition from a cubic to a monoclinic structure starts at 7.7 GPa and is complete at 18.8 GPa with a ~7.9% volume collapse. The monoclinic phase further transforms to a hexagonal phase starting at ~10.9 GPa and the hexagonal phase becomes dominant at 26.6 GPa. This high-pressure hexagonal phase with a small amount of retained monoclinic phase is stable up to the highest pressure of 49.0 GPa in this study. After pressure release, Dy2O3 is a monoclinic structure. A third-order Birch–Murnaghan fit yields zero pressure bulk moduli (B0) of 191(4), 179(9) and 231(22) GPa and their pressure derivatives (B0′) of 2.8(7), 4.2(6), 3.5(6) for the cubic, monoclinic and hexagonal phases, respectively. Comparing with other rare-earth sesquioxides, we confirm that the transition pressure from cubic to monoclinic phase, as well as the bulk modulus of the cubic phase, increases with the decreasing of the cation radius of rare-earth sesquioxides.
Keywords :
A. Rare-earth sesquioxides , D. Phase transition , E. High pressure , E. Synchrotron radiation
Journal title :
Solid State Communications
Serial Year :
2013
Journal title :
Solid State Communications
Record number :
1794386
Link To Document :
بازگشت