Author/Authors :
Lovschall، نويسنده , , H. and Fejerskov، نويسنده , , O. and Josephsen، نويسنده , , K.، نويسنده ,
Abstract :
The rat molars are frequently used as experimental models in endodontic research, but there is little systematic information available on the influence of age on the pulpodentinal organ in Wistar rat molars and it is often difficult to evaluate more subtle changes following experimental interventions. The aim here was to describe changes with age in first upper Wistar rat molars with specific reference to the pulpodentinal organ. Animals were perfused with glutaraldehyde at 19 days, 1, 3, 6, 8, 12, 16, or 24 months of age. First upper molars from 56 animals were demineralized in EDTA, embedded in Epon, and processed for light and transmission electron microscopy. Substantial variation in the structure of the dentine and odontoblasts was observed within the root canals and the coronal pulp chamber. In general, odontoblasts changed from a tall, columnar morphology in the coronal pulp chamber to a more cuboidal or flattened shape near the apex, particularly towards the interradicular space. Secondary dentine formation was more pronounced along the mesial aspect of the root chamber and corresponding to the bottom of fissures. Local tertiary dentine formation was layered in the upper pulp chamber, corresponding to occlusal attrition of the cusp. In several molars a local formation of irregular tertiary dentine was observed cervically in the mesial pulp chamber. After 1 year, a distinct protrusion of irregular dentine extended into the mesiocervical pulp, apparently corresponding to a denudation of cervical root dentine. Experimental pulp-capping studies frequently use first upper rat molars with perforations made through the mesial aspect of the crown; such perforations might be close to the irregular dentine in the mesiocervical region. In conclusion, this study identifies age-associated and regional changes of pulpodentinal morphology in first upper rat molars. Therefore, evaluation of morphological alterations following vital-pulp experiments should be done in specific age groups and at specific sites in the pulp.
Keywords :
Rat , ageing , odontoblasts , Dentine , CEMENTUM , Pulp