Title of article :
The effect of (Ti+Al):V ratio on the structure and oxidation behaviour of TiAlN/VN nano-scale multilayer coatings
Author/Authors :
Lewis، نويسنده , , D.B and Creasey، نويسنده , , S and Zhou، نويسنده , , Z and Forsyth، نويسنده , , J.J and Ehiasarian، نويسنده , , A.P and Hovsepian، نويسنده , , P.Eh and Luo، نويسنده , , Q and Rainforth، نويسنده , , W.M and Münz، نويسنده , , W.-D، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Abstract :
Nano-scaled multilayered TiAlN/VN coatings have been grown on stainless steel and M2 high speed steel substrates at UB=−85 V in an industrial, four target, Hauzer HTC 1000 coater using combined cathodic steered arc etching/unbalanced magnetron sputtering. X-ray diffraction (XRD) has been used to investigate the effects of process parameters (Target Power) on texture evolution (using texture parameter T*), development of residual stress (sin2 ψ method) and nano-scale multilayer period. The composition of the coating was determined using energy dispersive X-ray analysis. The thermal behaviour of the coatings in air was studied using thermo-gravimetric analysis, XRD and scanning electron microscopy. The bi-layer period varied between 2.8 and 3.1 nm and in all cases a {1 1 0} texture developed with a maximum value T*=4.9. The residual stress varied between −5.2 and −7.4 GPa. The onset of rapid oxidation occurred between 628 and 645 °C depending on the (Ti+Al):V ratio. After oxidation in air at 550 °C AlVO4, TiO2 and V2O5 phases were identified by XRD with the AlVO4, TiO2 being the major phases. The formation of AlVO4 appears to disrupt the formation of Al2O3 which imparts oxidation resistance to TiAlN based coatings. Increasing the temperature to 600 and 640 °C led to a dramatic increase in the formation of V2O5 which was highly oriented (0 0 1) with a plate-like morphology. At 640 °C there was no evidence of the coating on XRD. Increasing the temperature to 670 °C led to further formation of AlVO4 and a dramatic reduction in V2O5.
Keywords :
Nano-scale multilayers , TiAlN/VN coatings , Oxidation , X-ray diffraction , Scanning electron microscopy
Journal title :
Surface and Coatings Technology
Journal title :
Surface and Coatings Technology