Title of article :
Differential impact of TGF-β and EGF on fibroblast differentiation and invasion reciprocally promotes colon cancer cell invasion
Author/Authors :
Denys، نويسنده , , Hannelore and Derycke، نويسنده , , Lara and Hendrix، نويسنده , , An and Westbroek، نويسنده , , Wendy and Gheldof، نويسنده , , Alexander and Narine، نويسنده , , Kishan and Pauwels، نويسنده , , Patrick and Gespach، نويسنده , , Christian and Bracke، نويسنده , , Marc and De Wever، نويسنده , , Olivier، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
Several studies indicate that cancer-associated fibroblasts play a critical role in cancer cell invasion and metastasis, the hallmarks of malignancy. To better understand the mechanisms underlying such effects, we established a heterotypic model of human fibroblasts (primary colon fibroblasts and immortalized human dermal fibroblasts) in co-culture with human colon cancer cells (HCT-8/E11), using three-dimensional collagen type-I and Matrigel matrices. We report that TGF-β is the unique and dominant factor to provide pro-invasive signals to HCT-8/E11 colon cancer cells from TGF-β-treated human fibroblasts in three-dimensional collagen type I and Matrigel matrices. These effects are not mimicked or reversed by EGF or bFGF, and are associated with the TGF-β-mediated induction of myofibroblast differentiation and functional markers, such as α-SMA, the haptotactic matrix molecule TNC, collagen type 1 maturation enzyme P4H, serine protease FAP, and myofibroblast contractility. Accordingly, TGF-β induced a strong activation of RhoA and stress fiber formation in fibroblasts, with no impact on Rac1-GTP levels. In contrast, EGF down-regulated Rho-GTP levels in fibroblasts, giving permissive signals for Rac1 activation, fibroblast polarization, and invasion. Taken together, our data imply that TGF-β and EGF exert invasive growth-promoting actions in human colon tumors through a differential and cumulative impact on the stromal and cancer cell compartments. Our data predict that inhibitors directed at this reciprocal molecular and cellular crosstalk will have therapeutic applications for targeting the invasive growth of human primary tumors and their metastatic spread.
Keywords :
bFGF , Rho-GTPases , Stress fibers , Heterotypic co-cultures , Spheroid , Tenascin-C
Journal title :
Cancer Letters
Journal title :
Cancer Letters