Title of article :
Effect of substrate oxidation on spreading of plasma-sprayed nickel on stainless steel
Author/Authors :
McDonald، نويسنده , , A. and Moreau، نويسنده , , B. C. SATHEES CHANDRA، نويسنده , , S.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
11
From page :
23
To page :
33
Abstract :
Plasma-sprayed, molten nickel particles (∼ 60 μm diameter) were photographed during impact on oxidized 304L stainless steel surfaces that were maintained at either room temperature or at 350 °C. Steel coupons were oxidized by heating them at different temperatures. A fast charge-coupled device (CCD) camera captured time-integrated images of the spreading splat. A two-color pyrometer collected thermal radiation from particles and recorded the evolution of their temperature after impact. Molten nickel particles impacting on oxidized steel at room temperature fragmented significantly, while heating the surfaces produced splats with disk-like morphologies. Impact on steel that was highly oxidized induced the formation of finger-like splash projections at the splat periphery. Thermal contact resistance between splats and non-heated oxidized steel was calculated from splat cooling rates and found to decrease as the degree of oxidation increased. On heated, oxidized steel thermal contact resistance was much lower and did not change significantly with the degree of oxidation. It was concluded that thermal contact resistance was largely influenced by adsorbates on the steel surface that evaporated when the surface was heated or oxidized.
Keywords :
Adsorbates , Splashing , plasma spraying , Particle impact , Surface oxidation
Journal title :
Surface and Coatings Technology
Serial Year :
2007
Journal title :
Surface and Coatings Technology
Record number :
1817603
Link To Document :
بازگشت