Title of article :
Interfacial indentation test of FeB/Fe2B coatings
Author/Authors :
Campos-Silva، نويسنده , , I. and Martيnez-Trinidad، نويسنده , , J. and Doٌu-Ruيz، نويسنده , , M.A. and Rodrيguez-Castro، نويسنده , , G. and Hernلndez-Sلnchez، نويسنده , , E. and Bravo-Bلrcenas، نويسنده , , O.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
7
From page :
1809
To page :
1815
Abstract :
The present study uses interfacial indentation testing to estimate the adhesion of the FeB/Fe2B coating formed on the surface of borided AISI 316 steel. This technique creates and propagates a crack along the FeB/Fe2B interface and defines the apparent fracture toughness, which can then be related to the adhesion and mechanical support of the aforementioned interface. The boriding process was performed on the surface of AISI 316 steel by means of the powder-pack method at temperatures of 1123, 1173, 1223 and 1273 K with 2, 4, 6, 8 and 10 h for each temperature. The Youngʹs modulus for each surface layer was obtained by Knoop microindentation at a constant indentation load. Vickers microindentation fracture technique was used to generate microcracks at the FeB/Fe2B interface with varying indentation loads. The applied load, Youngʹs modulus, hardness, and lateral crack lengths generated from the corners of the indentations, along with the depth of the FeB layer, were used to determine the apparent fracture toughness and adhesion of the FeB/Fe2B interface. The apparent fracture toughness of the FeB/Fe2B interface varied between 3.56 and 4.45 MPa m . Finally, the intensity of residual stress at the FeB/Fe2B interface was estimated as a function of the FeB layer thickness.
Keywords :
cracking , interfacial fracture toughness , Boriding , Vickers microhardness , Residual stresses , Adhesion
Journal title :
Surface and Coatings Technology
Serial Year :
2011
Journal title :
Surface and Coatings Technology
Record number :
1825390
Link To Document :
بازگشت