Title of article :
A novel topical probe for MRI: The flat, truncated line probe
Author/Authors :
Rubinson، نويسنده , , Kenneth A. and Boska، نويسنده , , Michael، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1995
Pages :
8
From page :
301
To page :
308
Abstract :
The construction and imaging characteristics of flat, truncated line probes (FTLPs) are described here. These probes illustrate a novel design of local probes for magnetic resonance imaging, with four major differences from conventional loop surface probes: (1) The B1 fields are directed perpendicular to the usual loop probesʹ direction. (2) The RF fringe electric fields are inherently shielded, which allows reduced loading from electrically lossy samples. (3) The homogeneity across the plane of the probe can be adjusted locally. And (4) when not used with tuning and matching circuits, a probeʹs local impedance can be set to match the RF line impedance. The probes are, in essence, a single loop significantly flattened with the outside conductor (away from the imaged object) wider than the inside conductor (against the imaged object). The probes are shaped so as to provide a homogeneous signal across the plane area of the probe. The signal intensity drops off faster than a loop of the same size. With a minimally loading phantom, along the midline normal to the surface, the SN at the surface region is approximately 20% greater than a commercial probe (Philips R2) of the same area dimensions, while at 5 cm depth, the SN is lower. However, when used for imaging a body—again along the midline normal to the probe—the SN at 5 cm depth is equal, and rises to approximately twice that of the Philips R2 probe at the surface.
Keywords :
Flat truncated line probes (FTLPs) , B1 fields , Signal intensity , probe
Journal title :
Magnetic Resonance Imaging
Serial Year :
1995
Journal title :
Magnetic Resonance Imaging
Record number :
1826892
Link To Document :
بازگشت