Title of article :
A self consistent normalized calibration protocol for three dimensional magnetic resonance gel dosimetry
Author/Authors :
Cardenas، نويسنده , , Richard L and Cheng، نويسنده , , Kwan Hon and Verhey، نويسنده , , Lynn J and Xia، نويسنده , , Ping and Davis، نويسنده , , Lorne and Cannon، نويسنده , , Brian، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
13
From page :
667
To page :
679
Abstract :
In a clinical setting, mixed and inconsistent results have been reported using Magnetic Resonance Relaxation imaging of irradiated aqueous polymeric gels as a three-dimensional dosimeter, for dose verification of conformal radiation therapy. The problems are attributed to the difficulty of identifying an accurate dose calibration protocol for each delivered gel at the radiation site in a clinical setting. While careful calibration is done at the gel manufacturing site in a controlled laboratory setting, there is no guarantee that the dose sensitivity of the gels remains invariant upon delivery, irradiation, magnetic resonance imaging and storage at the clinical site. In this study, we have compared three different dose calibration protocols on aqueous polymeric gels for a variety of irradiation scenarios done in a clinical setting. After acquiring the three-dimensional proton relaxation maps of the irradiated gels, the dose distributions were generated using the off-site manufacturer provided calibration curve (Cal-1), the on-site external tube gel calibration (Cal-2) and the new on-site internal normalized gel calibration (Cal-3) protocols. These experimental dose distributions were compared with the theoretical dose distributions generated by treatment-planning systems. We observed that the experimental dose distributions generated from the Cal-1 and Cal-2 protocols were off by 10% to 40% and up to 200% above the predicted maximum dose, respectively. On the other hand, the experimental dose distributions generated from the Cal-3 protocol matched reasonably well with the theoretical dose distributions to within 10% difference. Our result suggests that an independent on-site normalized internal calibration must be performed for each batch of gel dosimeters at the time of MR relaxation imaging in order to account for the variations in dose sensitivity caused by various uncontrollable conditions in a clinical setting such as oxygen contamination, temperature changes and shelf life of the delivered gel between manufacturing and MR acquisitions.
Keywords :
Polymer gel dosimetry , dose verification , radiation therapy , Normalized R2
Journal title :
Magnetic Resonance Imaging
Serial Year :
2002
Journal title :
Magnetic Resonance Imaging
Record number :
1831493
Link To Document :
بازگشت