Title of article :
Calibration-Less Multi-coil MR image reconstruction
Author/Authors :
Majumdar، نويسنده , , Angshul and Ward، نويسنده , , Rabab K. Ward، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
In parallel magnetic resonance imaging (MRI), the problem is to reconstruct an image given the partial K-space scans from all the receiver coils. Depending on its position within the scanner, each coil has a different sensitivity profile. All existing parallel MRI techniques require estimation of certain parameters pertaining to the sensitivity profile, e.g., the sensitivity map needs to be estimated for the SENSE and SMASH and the interpolation weights need to be calibrated for GRAPPA and SPIRiT. The assumption is that the estimated parameters are applicable at the operational stage. This assumption does not always hold, consequently the reconstruction accuracies of existing parallel MRI methods may suffer.
pose a reconstruction method called Calibration-Less Multi-coil (CaLM) MRI. As the name suggests, our method does not require estimation of any parameters related to the sensitivity maps and hence does not require a calibration stage. CaLM MRI is an image domain method that produces a sensitivity encoded image for each coil. These images are finally combined by the sum-of-squares method to yield the final image. It is based on the theory of Compressed Sensing (CS). During reconstruction, the constraint that “all the coil images should appear similar” is introduced within the CS framework. This leads to a CS optimization problem that promotes group-sparsity. The results from our proposed method are comparable (at least for the data used in this work) with the best results that can be obtained from state-of-the-art methods.
Keywords :
Parallel MRI , Compressed sensing , Group sparsity
Journal title :
Magnetic Resonance Imaging
Journal title :
Magnetic Resonance Imaging