Title of article :
Informatics methods to enable sharing of quantitative imaging research data
Author/Authors :
Levy، نويسنده , , Mia A. and Freymann، نويسنده , , John B. and Kirby، نويسنده , , Justin S. and Fedorov، نويسنده , , Andriy and Fennessy، نويسنده , , Fiona M. and Eschrich، نويسنده , , Steven A. and Berglund، نويسنده , , Anders E. and Fenstermacher، نويسنده , , David A. and Tan، نويسنده , , Yongqiang and Guo، نويسنده , , Xiaotao and Casavant، نويسنده , , Thomas L. and Brown، نويسنده , , Bartley J. and Braun، نويسنده , , Terry A. and Dekker، نويسنده , , Andre and Roelofs، نويسنده , , Erik and Mountz، نويسنده , , James M. and Boada، نويسنده , , Fernando and Laymon، نويسنده , , Charles and Oborski، نويسنده , , Matt and Rubin، نويسنده , , Daniel L.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
8
From page :
1249
To page :
1256
Abstract :
Introduction tional Cancer Institute Quantitative Research Network (QIN) is a collaborative research network whose goal is to share data, algorithms and research tools to accelerate quantitative imaging research. A challenge is the variability in tools and analysis platforms used in quantitative imaging. Our goal was to understand the extent of this variation and to develop an approach to enable sharing data and to promote reuse of quantitative imaging data in the community. s formed a survey of the current tools in use by the QIN member sites for representation and storage of their QIN research data including images, image meta-data and clinical data. We identified existing systems and standards for data sharing and their gaps for the QIN use case. We then proposed a system architecture to enable data sharing and collaborative experimentation within the QIN. s are a variety of tools currently used by each QIN institution. We developed a general information system architecture to support the QIN goals. We also describe the remaining architecture gaps we are developing to enable members to share research images and image meta-data across the network. sions esearch network, the QIN will stimulate quantitative imaging research by pooling data, algorithms and research tools. However, there are gaps in current functional requirements that will need to be met by future informatics development. Special attention must be given to the technical requirements needed to translate these methods into the clinical research workflow to enable validation and qualification of these novel imaging biomarkers.
Keywords :
Quantitative Imaging Network , data sharing , Imaging Informatics , Research informatics , Image repository , Clinical data repository , system architecture , Image meta-data repository
Journal title :
Magnetic Resonance Imaging
Serial Year :
2012
Journal title :
Magnetic Resonance Imaging
Record number :
1833364
Link To Document :
بازگشت