Title of article :
Measuring small compartments with relatively weak gradients by angular double-pulsed-field-gradient NMR
Author/Authors :
Morozov، نويسنده , , Darya and Bar، نويسنده , , Leah and Sochen، نويسنده , , Nir and Cohen-Malayev، نويسنده , , Yoram، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
NMR diffusion–diffraction patterns observed in compartments in which restricted diffusion occurs are a useful tool for direct extraction of compartment sizes. Such diffusion–diffraction patterns may be observed when the signal intensity E(q,∆) is plotted against the wave-vector q (when q = (2π)− 1γδG). However, the smaller the compartment sizes are, the higher are the q-values needed to observe such diffractions. Moreover, these q-values should be achieved using short gradient pulses requiring extremely strong gradient systems. The angular double-pulsed-field gradient (d-PFG) NMR methodology has been proposed as a tool to extract compartment sizes using relatively low q-values. In this study, we have used single-PFG (s-PFG) NMR and angular d-PFG NMR to characterize the size of microcapillaries of about 2 ± 1 μm in diameter. We found that these microcapillaries are characterized by relatively strong background gradients that completely masked the effects of the microscopic anisotropy (μA) of the sample, resulting in a completely unexpected E(φ) profile in the angular d-PFG NMR experiments. We also show that bipolar angular d-PFG NMR experiments can largely suppress the effect of these background gradients resulting in the expected E(φ) profile from which the compartment dimensions could be obtained with relatively weak gradient pulses. These results demonstrate that the above methodology provides a quick, reliable, non-invasive means for estimating small pore sizes with relatively weak gradients in the presence of large magnetic susceptibility.
Keywords :
NMR spectroscopy , Diffusion NMR , Double-Pulsed-Field-Gradient (d-PFG) , microstructure , Compartment Size , Bipolar Gradients
Journal title :
Magnetic Resonance Imaging
Journal title :
Magnetic Resonance Imaging