Title of article :
Using Bayesian networks in the construction of a bi-level multi-classifier. A case study using intensive care unit patients data
Author/Authors :
Sierra، نويسنده , , Basilio and Serrano، نويسنده , , Nicol?s and Larra?aga، نويسنده , , Pedro and Plasencia، نويسنده , , Eliseo J and Inza، نويسنده , , I?aki and Jiménez، نويسنده , , Juan José and Revuelta، نويسنده , , Pedro and Mora، نويسنده , , Mar??a Luisa، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
16
From page :
233
To page :
248
Abstract :
Combining the predictions of a set of classifiers has shown to be an effective way to create composite classifiers that are more accurate than any of the component classifiers. There are many methods for combining the predictions given by component classifiers. We introduce a new method that combine a number of component classifiers using a Bayesian network as a classifier system given the component classifiers predictions. Component classifiers are standard machine learning classification algorithms, and the Bayesian network structure is learned using a genetic algorithm that searches for the structure that maximises the classification accuracy given the predictions of the component classifiers. Experimental results have been obtained on a datafile of cases containing information about ICU patients at Canary Islands University Hospital. The accuracy obtained using the presented new approach statistically improve those obtained using standard machine learning methods.
Keywords :
Supervised classification , Machine Learning , Bayesian networks , Stacked generalization , Genetic algorithms , 10-Fold cross-validation
Journal title :
Artificial Intelligence In Medicine
Serial Year :
2001
Journal title :
Artificial Intelligence In Medicine
Record number :
1835791
Link To Document :
بازگشت