Title of article :
Node merging in Kohonen’s self-organizing mapping of fMRI data
Author/Authors :
Ngan، نويسنده , , Shing-Chung and Yacoub، نويسنده , , Essa S. and Auffermann، نويسنده , , William F. and Hu، نويسنده , , Xiaoping، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Abstract :
In this paper, Kohonen’s self-organizing mapping (SOM) is used as a data-driven technique for analyzing functional magnetic resonance imaging (fMRI) data. Upon the completion of an SOM analysis, a cluster merging technique, based on examining the reproducibility of the fMRI data across epochs, is utilized to merge SOM nodes whose feature vectors are sufficiently similar to one another. The resulting ‘super nodes’ give time course templates of potential interest. These templates can be subsequently used in traditional template-based analysis methods, such as cross-correlation analysis, yielding statistical maps and activation patterns. This technique has been demonstrated on two fMRI datasets obtained from a visually-guided motor paradigm and a visual paradigm, respectively, showing satisfactory results.
Keywords :
self-organizing maps , FMRI , Cluster merging
Journal title :
Artificial Intelligence In Medicine
Journal title :
Artificial Intelligence In Medicine