Title of article :
Bagging tree classifiers for laser scanning images: a data- and simulation-based strategy
Author/Authors :
Hothorn، نويسنده , , Torsten and Lausen، نويسنده , , Berthold، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
Diagnosis based on medical image data is common in medical decision making and clinical routine. We discuss a strategy to derive a classifier with good performance on clinical image data and to justify the properties of the classifier by an adapted simulation model of image data. We focus on the problem of classifying eyes as normal or glaucomatous based on 62 routine explanatory variables derived from laser scanning images of the optic nerve head. As learning sample we use a case-control study of 98 normal and 98 glaucomatous subjects matched by age and sex.
ating multiple unstable classifiers allows substantial reduction of misclassification error in many applications and bench mark problems. We investigate the performance of various classifiers for the clinical learning sample as well as for a simulation model of eye morphologies. Bagged classification trees (bagged-CTREE) are compared to single classification trees and linear discriminant analysis (LDA). We additionally compare three estimators of misclassification error: 10-fold cross-validation, the 0.632+ bootstrap and the out-of-bag estimate. In summary, the application of our strategy of a knowledge-based decision support shows that bagged classification trees perform best for glaucoma classification.
Keywords :
Discriminant analysis , Laser scanning , images , Bagging , Error rate , Estimation , Simulation
Journal title :
Artificial Intelligence In Medicine
Journal title :
Artificial Intelligence In Medicine