Title of article :
Latent variable discovery in classification models
Author/Authors :
Zhang، نويسنده , , Nevin L and Nielsen، نويسنده , , Thomas D and Jensen، نويسنده , , Finn V، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
17
From page :
283
To page :
299
Abstract :
The naive Bayes model makes the often unrealistic assumption that the feature variables are mutually independent given the class variable. We interpret a violation of this assumption as an indication of the presence of latent variables, and we show how latent variables can be detected. Latent variable discovery is interesting, especially for medical applications, because it can lead to a better understanding of application domains. It can also improve classification accuracy and boost user confidence in classification models.
Keywords :
scientific discovery , Naive Bayes model , Bayesian networks , Latent Variables , Learning
Journal title :
Artificial Intelligence In Medicine
Serial Year :
2004
Journal title :
Artificial Intelligence In Medicine
Record number :
1836116
Link To Document :
بازگشت