Title of article :
A quantitative comparison of functional MRI cluster analysis
Author/Authors :
M. Lazaridou-Dimitriadou، نويسنده , , Evgenia and Barth، نويسنده , , Markus and Windischberger، نويسنده , , Christian and Hornik، نويسنده , , Kurt and Moser، نويسنده , , Ewald، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
15
From page :
57
To page :
71
Abstract :
The aim of this work is to compare the efficiency and power of several cluster analysis techniques on fully artificial (mathematical) and synthesized (hybrid) functional magnetic resonance imaging (fMRI) data sets. The clustering algorithms used are hierarchical, crisp (neural gas, self-organizing maps, hard competitive learning, k-means, maximin-distance, CLARA) and fuzzy (c-means, fuzzy competitive learning). To compare these methods we use two performance measures, namely the correlation coefficient and the weighted Jaccard coefficient (wJC). Both performance coefficients (PCs) clearly show that the neural gas and the k-means algorithm perform significantly better than all the other methods using our setup. For the hierarchical methods the ward linkage algorithm performs best under our simulation design. In conclusion, the neural gas method seems to be the best choice for fMRI cluster analysis, given its correct classification of activated pixels (true positives (TPs)) whilst minimizing the misclassification of inactivated pixels (false positives (FPs)), and in the stability of the results achieved.
Keywords :
fMRI analysis , Performance coefficients , comparative study , clustering algorithms , Validation
Journal title :
Artificial Intelligence In Medicine
Serial Year :
2004
Journal title :
Artificial Intelligence In Medicine
Record number :
1836131
Link To Document :
بازگشت