Title of article :
Comparison of neural network predictors in the classification of tracheal–bronchial breath sounds by respiratory auscultation
Author/Authors :
Folland، نويسنده , , Ross and Hines، نويسنده , , Evor and Dutta، نويسنده , , Ritaban and Boilot، نويسنده , , Pascal and Morgan، نويسنده , , David، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Abstract :
Despite extensive research in the area of identification and discrimination of tracheal–bronchial breath sounds by computer analysis, the process of identifying auscultated sounds is still subject to high estimation uncertainties. Here we assess the performance of the relatively new constructive probabilistic neural network (CPNN) against the more common classifiers, namely the multilayer perceptron (MLP) and radial basis function network (RBFN), in classifying a broad range of tracheal–bronchial breath sounds. We present our data as signal estimation models of the tracheal–bronchial frequency spectra. We have examined the trained structure of the CPNN with respect to the other architectures and conclude that this architecture offers an attractive means with which to analyse this type of data. This is based partly on the classification accuracies attained by the CPNN, MLP and RBFN which were 97.8, 77.8 and 96.2%, respectively.
cluded that CPNN and RBFN networks are capable of working successfully with this data, with these architectures being acceptable in terms of topological size and computational overhead requirements. We further believe that the CPNN is an attractive classification mechanism for auscultated data analysis due to its optimal data model generation properties and computationally lightweight architecture.
Keywords :
Breath sounds , MLP , Auscultation , neural network , CPNN , RBFN
Journal title :
Artificial Intelligence In Medicine
Journal title :
Artificial Intelligence In Medicine