Title of article :
Semantic relations for problem-oriented medical records
Author/Authors :
Osman and Uzuner، نويسنده , , Ozlem and Mailoa، نويسنده , , Jonathan and Ryan، نويسنده , , Russell and Sibanda، نويسنده , , Tawanda، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
Objective
cribe semantic relation (SR) classification on medical discharge summaries. We focus on relations targeted to the creation of problem-oriented records. Thus, we define relations that involve the medical problems of patients.
s and materials
resent patients’ medical problems with their diseases and symptoms. We study the relations of patients’ problems with each other and with concepts that are identified as tests and treatments. We present an SR classifier that studies a corpus of patient records one sentence at a time. For all pairs of concepts that appear in a sentence, this SR classifier determines the relations between them. In doing so, the SR classifier takes advantage of surface, lexical, and syntactic features and uses these features as input to a support vector machine. We apply our SR classifier to two sets of medical discharge summaries, one obtained from the Beth Israel-Deaconess Medical Center (BIDMC), Boston, MA and the other from Partners Healthcare, Boston, MA.
s
BIDMC corpus, our SR classifier achieves micro-averaged F-measures that range from 74% to 95% on the various relation types. On the Partners corpus, the micro-averaged F-measures on the various relation types range from 68% to 91%. Our experiments show that lexical features (in particular, tokens that occur between candidate concepts, which we refer to as inter-concept tokens) are very informative for relation classification in medical discharge summaries. Using only the inter-concept tokens in the corpus, our SR classifier can recognize 84% of the relations in the BIDMC corpus and 72% of the relations in the Partners corpus.
sion
results are promising for semantic indexing of medical records. They imply that we can take advantage of lexical patterns in discharge summaries for relation classification at a sentence level.
Keywords :
Lexical context , Support Vector Machines , Relation classification for the problem-oriented record , Medical language processing
Journal title :
Artificial Intelligence In Medicine
Journal title :
Artificial Intelligence In Medicine