Title of article :
An evaluation of heuristics for rule ranking
Author/Authors :
Dreiseitl، نويسنده , , Stephan and Osl، نويسنده , , Melanie and Baumgartner، نويسنده , , Christian and Vinterbo، نويسنده , , Staal، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
6
From page :
175
To page :
180
Abstract :
Objective luate and compare the performance of different rule-ranking algorithms for rule-based classifiers on biomedical datasets. ology cal evaluation of five rule ranking algorithms on two biomedical datasets, with performance evaluation based on ROC analysis and 5 × 2 cross-validation. s ung cancer dataset, the area under the ROC curve (AUC) of, on average, 14267.1 rules was 0.862. Multi-rule ranking found 13.3 rules with an AUC of 0.852. Four single-rule ranking algorithms, using the same number of rules, achieved average AUC values of 0.830, 0.823, 0.823, and 0.822, respectively. On a prostate cancer dataset, an average of 339265.3 rules had an AUC of 0.934, while 9.4 rules obtained from multi-rule and single-rule rankings had average AUCs of 0.932, 0.926, 0.925, 0.902 and 0.902, respectively. sion variate rule ranking performs better than the single-rule ranking algorithms. Both single-rule and multi-rule methods are able to substantially reduce the number of rules while keeping classification performance at a level comparable to the full rule set.
Keywords :
Rule ranking , lung cancer , Rule evaluation metrics , prostate cancer
Journal title :
Artificial Intelligence In Medicine
Serial Year :
2010
Journal title :
Artificial Intelligence In Medicine
Record number :
1836957
Link To Document :
بازگشت