Title of article :
Application of FTIR in direct methanol fuel cells – Quantitative analysis of PTFE in gas diffusion layers
Author/Authors :
Jing، نويسنده , , Mingyi and Jiang، نويسنده , , Luhua and Wang، نويسنده , , Suli and Jing، نويسنده , , Fenning and Sun، نويسنده , , Gongquan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
7
From page :
7957
To page :
7963
Abstract :
Gas diffusion layers (GDLs) of direct methanol fuel cells (DMFCs), consisting of a microporous layer (MPL) and a back layer (BL), influence the cell performance and stability significantly due to the critical function that the GDL undertook, i.e., distribution of reactants and removal of the products in electrodes. The hydrophilic/hydrophobic properties of the GDLs are required to tailor to the transport/transfer of reactants/products depending on a specific electrode reaction. One important way to adjust the hydrophobic/hydrophilic properties of GDLs is to vary PTFE content in GDLs. In this paper, we employ infrared spectroscopy technique, specifically, diffuse reflection (DR) method and attenuation total reflection (ATR) method, to determine the PTFE content in both MPLs and BLs quantitatively by comparing the measured C-F intensity with the pre-calibrated standard plots. Compared to the ATR method, the DR method takes advantages of sensitivity, wide range and precision. By the DR method, we succeed in observing that PTFE in MPLs migrates to BLs, consistent with the corresponding EDX results for a sample experienced 600 h lifetime test, suggesting DR method an effective approach to determine quantitatively the hydrophilic/hydrophobic properties of both MPLs and BLs.
Keywords :
FTIR , Gas diffusion layers , Diffusion reflection , PTFE , ATR
Journal title :
International Journal of Hydrogen Energy
Serial Year :
2013
Journal title :
International Journal of Hydrogen Energy
Record number :
1863215
Link To Document :
بازگشت