Title of article :
Thermal inkjet printing of thin-film electrolytes and buffering layers for solid oxide fuel cells with improved performance
Author/Authors :
Li، نويسنده , , Chao and Shi، نويسنده , , Huangang and Ran، نويسنده , , Ran and Su، نويسنده , , Chao and Shao، نويسنده , , Zongping، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
10
From page :
9310
To page :
9319
Abstract :
In this study, we report the facile fabrication of thin-film yttria-stabilized zirconia (YSZ) electrolytes and Sm0.2Ce0.8O1.9 (SDC) buffering layers for solid oxide fuel cells (SOFCs) using a thermal inkjet printing technique. Stable YSZ and SDC inks with solids contents as high as 20 and 10 wt.%, respectively, were first prepared. One single printing typically resulted in an YSZ membrane with thickness of approximately 1.5 μm, and membranes with thicknesses varied from 1.5 to 7.5 μm were fabricated with multiple sequential printing. An as-fabricated cell with a La0.8Sr0.2MnO3 (LSM) cathode delivered a peak power density (PPD) of 860 mW cm−2 at 800 °C. The SDC layer prepared using the inkjet printing method exhibited enclosed pores and a rough surface, which was, however, ideal for its application as a buffering layer. A cell with a dense 7.5-μm-thick YSZ layer, a 2-μm-thick SDC buffering layer and a Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) cathode was fabricated; this cell delivered a PPD of 1040 mW cm−2 at 750 °C and a high open circuit voltage (OCV) of approximately 1.10 V. The described technique provides a facile method for the fabrication of electrolytes for SOFCs with precise thickness control.
Keywords :
solid oxide fuel cells , inkjet printing , electrolyte , Thin film , Buffering layer
Journal title :
International Journal of Hydrogen Energy
Serial Year :
2013
Journal title :
International Journal of Hydrogen Energy
Record number :
1863710
Link To Document :
بازگشت