Title of article :
Dust cloud combustion characterization of a mixture of LiBH4 destabilized with MgH2 for reversible H2 storage in mobile applications
Author/Authors :
Khalil، نويسنده , , Y.F.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Abstract :
This study discusses results of an experimental program to determine dust cloud combustion characteristics of 2LiBH4 + MgH2 binary system in air. The determined parameters of hydrided and partially-dehydrided states of this system include: maximum deflagration pressure rise (PMAX), maximum rate of pressure rise (dP/dt)MAX, minimum ignition temperature (TC), minimum explosible concentration (MEC), minimum ignition energy (MIE), and explosion severity index (KSt). Impact of dust particle size on the measured parameters is evaluated for the partially-dehydrided state. For dust of same mean particle size, results show the hydrided state to be more explosible in air compared to its partially-dehydrided state. Moreover, MIE of the partially-dehydrided mixture is identified in the test with lowest ignition delay time (IDT) and highest dust cloud concentration (DC). Taguchiʹs mixed-levels design of experiments (DoE) methodology is employed to calculate dustʹs MIE response surface as a function of DC and IDT. The one-at-a-time effect and interaction effect between DC and IDT on dust MIE are determined. The core insights of this contribution are useful for quantifying risks in mobile and stationary H2 storage applications, informing H2 safety standards, and augmenting property databases of H2 storage materials.
Keywords :
Dehydrogenation , deflagration , Dust cloud , Hydrogen storage , Lithium borohydride , Magnesium hydride
Journal title :
International Journal of Hydrogen Energy
Journal title :
International Journal of Hydrogen Energy