Title of article :
Influence of fuel composition on chemiluminescence emission in premixed flames of CH4/CO2/H2/CO blends
Author/Authors :
Garcيa-Armingol، نويسنده , , Tatiana and Ballester، نويسنده , , Javier، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
11
From page :
20255
To page :
20265
Abstract :
The growing concern about pollutant emissions and depletion of fossil fuels has been a strong motivator for the development of cleaner and more efficient combustion strategies, such as the gasification of coal, biomass or waste, which have increased the interest in using a new type of fuels, mainly composed of CH4, H2, CO and CO2. new fuels, commonly called syngas, display a wide range of compositions, which affects their combustion characteristics and, in some cases, are more prone to instabilities or flashback. Since flame properties have been demonstrated to be strongly related to equivalence ratio, a precise measurement of the flame stoichiometry is a key pre-requisite for combustion optimization and prevention of unstable regimes. In particular, chemiluminescence emission from flames has been largely tested for stoichiometry monitoring for methane flames, but its use in syngas flames has been far less studied. Consequently, the main goal of this work is analyzing the effect of fuel composition on the chemiluminescence vs. equivalence ratio curves for different fuel blends, as a first approach for a wide range of syngas compositions. The experimental results revealed that the ratio OH*/CH*, which had been widely demonstrated to be the best option for methane, may not be suitable for monitoring with certain fuels, such as those with a high percent of hydrogen. Alternatively, other signals, in particular the ratio OH*/CO2*, appear as viable stoichiometry indicators in those cases. alysis was also completed by numerical predictions with CHEMKIN. The comparisons of calculations with different flame models and experimental data reveals differences in the chemiluminescence vs. equivalence ratio curves for the different combustion regimes, depending on the range of the equivalence ratio ranges and fuel compositions. This finding, which confirms previous observations for a much narrower range of fuels, could have important practical consequences for the application of the technique in real combustors.
Keywords :
Premixed flame , Flame stoichiometry , Combustion regime , Chemiluminescence , Syngas
Journal title :
International Journal of Hydrogen Energy
Serial Year :
2014
Journal title :
International Journal of Hydrogen Energy
Record number :
1871187
Link To Document :
بازگشت