Author/Authors :
Shustorovich، نويسنده , , Evgeny، نويسنده ,
Abstract :
Tremendous advances in experimental studies of chemisorption revealed that many phenomena could not be understood and projected by the current theoretical constructs. We discuss some of the experimental puzzles that prompted a development of new analytic approaches to chemisorption based on general principles such as perturbation theory (PT) and bond-order conservation (BOC). The PT results concern the periodic regularities of the heat of chemisorption, the role of the antibonding adsorbate orbitals, and universal patterns of adsorbate-induced surface polarization Some of the PT findings are further corroborated within a much broader BOC approach. The BOC model and its postulates (including the use of a Morse potential) and diverse projections are thoroughly discussed. For atomic A and diatomic AB adsorbates, it is shown how the BOC model explicitly and rigorously interrelates a variety of seemingly disparate phenomena such as preferred adsorbate sites, the activation barriers for surface migration and dissociation, relations between atomic QA (QB) and molecular QAB heats of chemisorption, coverage and coadsorption effects on QA, overlayer phase transitions and island formation, the nature of promotion and poisoning. The model also projects possible intermediates and elementary steps of surface reactions. Although some of the findings are counter to commonly held perceptions, the whole picture of chemisorption is coherent and fits experiment well. The new conceptual understanding is stressed and some comments on the theory of chemisorption are made.