Title of article
Characteristics of an air source heat pump with novel photoelectric sensors during periodic frost–defrost cycles
Author/Authors
Wang، نويسنده , , Wei and Xiao، نويسنده , , Jing and Feng، نويسنده , , Yingchao and Guo، نويسنده , , Qingci and Wang، نويسنده , , Lincheng، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2013
Pages
10
From page
177
To page
186
Abstract
To avoid mal-defrost phenomenon, an innovative photoelectric sensor is developed and presented in this paper. It is referred to as “Tube Encircled Photoelectric Sensor” (TEPS). Experiments are carried out in a controlled environmental chamber under standard frosting conditions. Ten TEPSs in 4 different models are tested on a commercial size air source heat pump with the nominal heating capacity of 60 kW. The characteristics of the air source heat pump, together with the performance of the TEPSs are investigated during 9 periodic frost–defrost cycles. Compared with the original defrosting control strategy equipped by the manufacturer, the proposed TEPS sensor reveals its potential ability to accurately control the defrosting process. Experimental results demonstrate that TEPSs can substantially prolong defrost intervals from 28.8 min to 52 min under the experimental conditions, and the number of defrost cycles can be reduced from 9 to 5. The performance improvement is found to be 6% to the heating efficiency, and 5% to the COP.
Keywords
Air source heat pump , Defrosting , TEPS , COP , Heating efficiency
Journal title
Applied Thermal Engineering
Serial Year
2013
Journal title
Applied Thermal Engineering
Record number
1904890
Link To Document