Title of article :
Mechanism research on coupling effect between dew point corrosion and ash deposition
Author/Authors :
Wang، نويسنده , , Yun-Gang and Zhao، نويسنده , , Qinxin and Zhang، نويسنده , , Zhixiang and Zhang، نويسنده , , Zhi-Chao and Tao، نويسنده , , Wen-Quan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
In order to study the coupling mechanism between ash deposition and dew point corrosion, five kinds of tube materials frequently used as anti-dew point corrosion materials were selected as research objects. Dew point corrosion and ash deposition experiments were performed with a new type experimental device in a Chinese thermal power plant. The microstructures of the materials and the composition of ash deposition were analyzed by X-ray diffraction (XRD) and Energy Dispersive Spectrometer (EDS). The results showed that the ash deposition layer could be divided into non-condensation zone, the main condensation zone and the secondary condensation zone. The acid vapor condensed in the main condensation zone rather than directly on the tube wall surface. The dew point corrosion mainly is oxygen corrosion under the condition of the viscosity ash deposition, and the corrosion products are composed of the ash and acid reaction products in the outer layer, iron sulfate in the middle layer, and iron oxide in the inner layer. The innermost layer is the main corrosion layer. With the increase of the tube wall temperature, the ash deposition changes from the viscosity ash deposition to the dry loose ash deposition, the ash deposition rate decreases dramatically and dew point corrosion is alleviated efficiently. The sulfuric dew point corrosion resistance of the five test materials is as follows: 316L > ND > Corten>20G > 20# steel.
Keywords :
ash deposition , Waste Heat Recovery , Dew point corrosion , Coupling effect
Journal title :
Applied Thermal Engineering
Journal title :
Applied Thermal Engineering