Title of article :
Heat transfer at film condensation of stationary vapor with nanoparticles near a vertical plate
Author/Authors :
Avramenko، نويسنده , , Andriy A. and Shevchuk، نويسنده , , Igor V. and Tyrinov، نويسنده , , Andrii I. and Blinov، نويسنده , , Dmitry G.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
8
From page :
391
To page :
398
Abstract :
Processes of momentum, heat and mass transfer at the condensation of the stationary vapor with nanoparticles near a vertical plate were investigated using an approximate analytical model. This model extends the classical model of Nusselt by way of the inclusion of an equation for the nanoparticle concentration and a dependence of the nanofliud density on the nanoparticles concentration. Thus, mechanisms of the Brownian and thermophoretic diffusion are incorporated. The essential novelty lies in the identification of three main dimensionless parameters, which describe the influence of nanoparticles on heat transfer and fluid flow. They are (i) the parameter A that denotes the relation between the mechanisms of the thermophoretic and Brownian diffusion, (ii) the concentration ϕ∞ of nanoparticles in the vapor, and (iii) the ratio R of the densities of the nanoparticles and the fluid. Novel analytical solutions were derived that describe velocity profiles, the mass flow rate and the thickness of the film as the functions of the parameters A, ϕ∞ and R. Finally, a novel analytical solution for the normalized Nusselt number was obtained as a function of the aforementioned three dimensionless parameters. An increase in each of these parameters causes an increase in the normalized Nusselt number.
Keywords :
Fluid flow , nanofluid , Condensation , heat transfer
Journal title :
Applied Thermal Engineering
Serial Year :
2014
Journal title :
Applied Thermal Engineering
Record number :
1908379
Link To Document :
بازگشت