Title of article :
Study of the influence of inner lining material on thermal stratification in a hot water storage tank
Author/Authors :
Gasque، نويسنده , , Marيa and Gonzلlez-Altozano، نويسنده , , Pablo and Maurer، نويسنده , , Daniel and Moncho-Esteve، نويسنده , , Ignacio José and Gutiérrez-Colomer، نويسنده , , Rosa Penélope and Palau-Salvador، نويسنده , , Guillermo and Garcيa-Marي، نويسنده , , Eugenio، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2015
Pages :
13
From page :
344
To page :
356
Abstract :
The present study has analysed the influence of thermal conductivity of the inner lining material on the stratification process in a hot water tank during thermal charge and the later standby period. This analysis has been carried out numerically by a three-dimensional Computational Fluid Dynamics (CFD) model. Experimental measurements of temperature profiles are used to select and verificate the model, and to later validate CFD simulations. With the validated model, temperature over time at several heights, temperature profiles, velocity contours, water streamtraces and temperature contours, are studied and compared for three different inner lining materials. The obtained results confirm that a weak conducting lining material favours energy storage in the tank and the thermal stratification of water during charge and subsequent standby period. The effect of the inner lining material on the energy accumulated in water and on the moment of energy (stratification) is potentially enhanced when the materialʹs thermal conductivity diminishes. The use of insulating paints as inner lining for water storage tanks could be a possible solution to be studied and subsequently adopted in practice to improve the efficient use of energy in stored water. The analysis techniques employed prove most useful and enable the results to be compared and presented in a novel way.
Keywords :
CFD , Water stratification , Thermal energy storage , Inner lining material
Journal title :
Applied Thermal Engineering
Serial Year :
2015
Journal title :
Applied Thermal Engineering
Record number :
1908841
Link To Document :
بازگشت