Title of article :
Effects of hemicellulose removal on cellulose fiber structure and recycling characteristics of eucalyptus pulp
Author/Authors :
Wan ، نويسنده , , Jinquan and Wang، نويسنده , , Yan and Xiao، نويسنده , , Qing، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
7
From page :
4577
To page :
4583
Abstract :
Eucalyptus pulp fibers with large differences in cellulose and hemicellulose proportions but similar lignin contents were produced by partial removal of the hemicellulose and studied using Cross-Polarization Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance (CP/MAS 13C NMR) in combination with spectral fitting, Atomic Force Microscopy (AFM), X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). There were remarkable differences in both cellulose fibril structure, pore structure and cellulose supermolecular structure between the samples. CP/MAS 13C NMR combined with spectral fitting demonstrated an increase in average fibril aggregate size (17.9–22.2 nm) with decreasing hemicellulose content. AFM observations revealed that when the hemicellulose content decreased from 27.62% to 19.80%, the average diameters of pores decreased by 12.53%, but increased by 13.55% when the hemicellulose content decreased from 19.80% to 9.09%. XRD and FTIR analysis indicated that cellulose crystallinity increased with decreasing hemicellulose content. The low and high hemicellulose-containing pulps had very different recycling characteristics, which may be explained by the changes observed at cellulose fiber structure level. Fibrils appear to aggregate and form a more compact structure when the hemicellulose is removed, which was caused by a coalescence of the cellulose microfibrils. The removal of hemicellulose had disadvantageous influence on the accessibility of fibers and enhanced fiber flattening during drying, leading to increased sheet density and increased hornification.
Keywords :
Hemicellulose , cellulose , Physical Properties , recycling , Eucalyptus
Journal title :
Bioresource Technology
Serial Year :
2010
Journal title :
Bioresource Technology
Record number :
1920897
Link To Document :
بازگشت