Title of article :
Improved thermal interface property of carbon nanotube–Cu composite based on supercritical fluid deposition
Author/Authors :
An، نويسنده , , Zhonglie and Toda، نويسنده , , Masaya and Ono، نويسنده , , Takahito، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Abstract :
In this paper, we present a new synthesis method of carbon nanotubes (CNTs)-copper (Cu) composite on a silicon substrate using combination of supercritical fluid deposition (SCFD) and electrochemical plating (ECP) process. Deposition of a Cu layer onto CNTs is carried out under supercritical condition, and the CNTs–Cu composite with high-density Cu is synthesized by additional ECP process. The Cu layer deposited by SCFD functions as a seed layer for ECP, and spaces between neighboring CNTs are filled by Cu. The measured density of the CNTs–Cu composite is 8.2 ± 0.3 g/cm3, and the volume percentage of voids is 3–6%. The evaluated thermal resistance including the thermal interface resistance and bulk resistance of the composite is as low as 28.4 mm2 K W−1 at a contact pressure of 0.2 MPa. A CNT brush formed on the composite surface can reduce the thermal resistance to be 68.4 mm2 K W−1 at a contact pressure of 0.25 MPa. The CNTs–Cu composite shows the ability applicable to many microelectronics applications as a thermal interface material.