• Title of article

    Optimization of linear alkylbenzene sulfonate (LAS) degradation in UASB reactors by varying bioavailability of LAS, hydraulic retention time and specific organic load rate

  • Author/Authors

    Okada، نويسنده , , Dagoberto Y. and Delforno، نويسنده , , Tiago P. and Esteves، نويسنده , , Andressa S. and Sakamoto، نويسنده , , Isabel K. and Duarte، نويسنده , , Iolanda C.S. and Varesche، نويسنده , , Maria B.A.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2013
  • Pages
    9
  • From page
    125
  • To page
    133
  • Abstract
    Degradation of linear alkylbenzene sulfonate (LAS) in UASB reactors was optimized by varying the bioavailability of LAS based on the concentration of biomass in the system (1.3–16 g TS/L), the hydraulic retention time (HRT), which was operated at 6, 35 or 80 h, and the concentration of co-substrates as specific organic loading rates (SOLR) ranging from 0.03–0.18 g COD/g TVS.d. The highest degradation rate of LAS (76%) was related to the lowest SOLR (0.03 g COD/g TVS.d). Variation of the HRT between 6 and 80 h resulted in degradation rates of LAS ranging from 18% to 55%. Variation in the bioavailability of LAS resulted in discrete changes in the degradation rates (ranging from 37–53%). According to the DGGE profiles, the archaeal communities exhibited greater changes than the bacterial communities, especially in biomass samples that were obtained from the phase separator. The parameters that exhibited more influence on LAS degradation were the SOLR followed by the HRT.
  • Keywords
    Adsorption , Bioavailability , HRT , DGGE , surfactant
  • Journal title
    Bioresource Technology
  • Serial Year
    2013
  • Journal title
    Bioresource Technology
  • Record number

    1930772