Title of article :
Modelling of multi-nutrient interactions in growth of the dinoflagellate microalga Protoceratium reticulatum using artificial neural networks
Author/Authors :
Lَpez-Rosales، نويسنده , , L. and Gallardo-Rodrيguez، نويسنده , , J.J. and Sلnchez-Mirَn، نويسنده , , A. and Contreras-Gَmez، نويسنده , , A. and Garcيa-Camacho، نويسنده , , F. and Molina-Grima، نويسنده , , E.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
7
From page :
682
To page :
688
Abstract :
This study examines the use of artificial neural networks as predictive tools for the growth of the dinoflagellate microalga Protoceratium reticulatum. Feed-forward back-propagation neural networks (FBN), using Levenberg–Marquardt back-propagation or Bayesian regularization as training functions, offered the best results in terms of representing the nonlinear interactions among all nutrients in a culture medium containing 26 different components. A FBN configuration of 26-14-1 layers was selected. The FBN model was trained using more than 500 culture experiments on a shake flask scale. Garson’s algorithm provided a valuable means of evaluating the relative importance of nutrients in terms of microalgal growth. Microelements and vitamins had a significant importance (approximately 70%) in relation to macronutrients (nearly 25%), despite their concentrations in the culture medium being various orders of magnitude smaller. The approach presented here may be useful for modelling multi-nutrient interactions in photobioreactors.
Keywords :
microalga , dinoflagellate , Growth modelling , Artificial neural network
Journal title :
Bioresource Technology
Serial Year :
2013
Journal title :
Bioresource Technology
Record number :
1934127
Link To Document :
بازگشت