Author/Authors :
Li، نويسنده , , J.H and Vasanthan، نويسنده , , T. and Rossnagel، نويسنده , , B. and Hoover، نويسنده , , R.، نويسنده ,
Abstract :
Gelatinization, granular swelling, amylose leaching, viscosity and acid susceptibility characteristics of starches isolated from 10 hull-less barley (HB) genotypes [zero amylose (CDC Alamo), waxy (CDC candle, SB 94794, SB 94912, and SB 94917), normal amylose (Phoenix, CDC Dawn, SR 93102, and SB 94860) and high amylose (SB 94893 and SB 94897)] were monitored by differential scanning calorimetry (DSC), swelling power (SP), solubility, Brabender viscoamylography, and reaction with 2.2 N HCl (at 35 °C), respectively. DSC data showed that To, Tp, Tc, Tc–To, and ΔH ranged from 50.1–56.1, 58.1–64.5, 71.0–75.8, 17.9–24.0 °C and 9.6–14.2 J/g of amylopectin, respectively. In compound waxy (SB 94917) and compound normal (SR 93102 and SB 94860) starches, To and Tc–To were lower and higher, respectively, than in the other starches. ΔH followed the order: compound normal>waxy>normal≈zero amylose>high amylose>compound waxy. The SP followed the order: zero amylose>waxy>compound normal>normal>high amylose. A rapid increase in solubility occurred at lower temperatures (<70 °C) for zero amylose HB starch, however, this increase was gradual for the other starches. At 90 °C, solubility followed the order: high amylose>compound normal>normal>waxy. Zero amylose and waxy HB starches exhibited lower pasting temperatures, higher peak viscosities, and higher viscosity breakdown than normal HB starches. The extent of acid hydrolysis followed the order: zero amylose>compound waxy>waxy>normal>compound normal>high amylose. High correlations were observed between physicochemical properties and structural characteristics of HB starches.