Title of article :
Robust Potato Color Image Segmentation using Adaptive Fuzzy Inference System
Author/Authors :
P. Moallem، P. Moallem نويسنده Electrical Engineering Department, University of Isfahan, Isfahan, Iran P. Moallem, P. Moallem , N. Razmjooy، N. Razmjooy نويسنده Young Researchers and Elite Club, Majlesi branch, Islamic Azad Uni- versity, Isfahan, Iran N. Razmjooy, N. Razmjooy , B. S. Mousavi، B. S. Mousavi نويسنده Electrical Engineering Department, Hatef Higher Education Insti- tute, Zahedan, Iran B. S. Mousavi, B. S. Mousavi
Issue Information :
دوماهنامه با شماره پیاپی 0 سال 2014
Pages :
19
From page :
47
To page :
65
Abstract :
Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and view of potato from digital camera. In the proposed algorithm, after selecting appropriate color space, distance between an image pixel and real potato pixels is computed. Furthermore, this distance feeds to a fuzzy rule-based classifier to extract potato candidate in the input image. A subtractive clustering algorithm is also used to decide on the number of rules and membership functions of the fuzzy system. To improve the performance of the fuzzy rule-based classifier, the membership functions shapes are also optimized by the GA. To segment potatoes in the input color image, an image thresholding is applied to the output of the fuzzy system, where the corresponding threshold is optimized by the GA. To improve the segmentation results, a sequence of some morphological operators are also applied to the output of thresholding stage. The proposed algorithm is applied to different databases with different backgrounds, including USDA, CFIA, and obtained potato images database from Ardabil (Iranʹs northwest), separately. The correct segmentation rate of the proposed algorithm is approximately 98\% over totally more than 500 potato images. Finally, the results of the proposed segmentation algorithm are evaluated for some images taken from real environments of potato industries and farms.
Journal title :
Iranian Journal of Fuzzy Systems (IJFS)
Serial Year :
2014
Journal title :
Iranian Journal of Fuzzy Systems (IJFS)
Record number :
1968634
Link To Document :
بازگشت