Title of article :
Dynamic rheological properties of plant cell-wall particle dispersions
Author/Authors :
Day، نويسنده , , Li and Xu، نويسنده , , Mi and طiseth، نويسنده , , Sofia K. and Lundin، نويسنده , , Leif and Hemar، نويسنده , , Yacine، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
7
From page :
461
To page :
467
Abstract :
The rheological behaviour of plant cell-wall particle dispersions was investigated using dynamic oscillatory measurements. Two starting plant materials, broccoli stem and carrot were used and two types of particles were obtained by mechanically shearing blanched (80 °C, 10 min) or cooked (100 °C, 15 min) plant tissues. Blanching resulted in cell-wall particles made up of a collection of clusters of cells with an average particles size of ∼200 μm, while cooking generated nearly all single-cell particles with an average particle size of ∼80 μm. The rheological measurements showed that in the range of weight concentrations considered (∼0.5% to ∼8%) the dispersions behaved as elastic materials with the elastic modulus G′ higher than G″ within the frequency range (0.01–10 Hz). This study shows that the behaviour of the complex modulus G* as a function of the effective volume fraction ϕ can be modelled using different theoretical equations. To do so, it is assumed that below a critical volume fraction ϕc a network of plant cell-wall particles was formed and G* as a function of ϕ obeys a power-law relationship. However above ϕc, where the particles were highly packed, G* could be modelled using theoretical equations developed for concentrated emulsions and elastic particle dispersions.
Keywords :
Plant cell-wall , rheology , confocal microscopy , Complex modulus , volume fraction
Journal title :
Colloids and Surfaces B Biointerfaces
Serial Year :
2010
Journal title :
Colloids and Surfaces B Biointerfaces
Record number :
1972025
Link To Document :
بازگشت