Title of article :
Monitoring of photoluminescence decay by alkali and alkaline earth metal cations using a photoluminescent bolaamphiphile self-assembly as an optical probe
Author/Authors :
Kim، نويسنده , , Sunhyung and Kwak، نويسنده , , Jinyoung and Lee، نويسنده , , Sang-Yup، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
6
From page :
252
To page :
257
Abstract :
Photoluminescence (PL) decay induced by the displacement of an ionic fluorescence component, Tb3+, with alkali and alkaline earth metal cations was investigated using photoluminescent spherical self-assemblies as optical probes. The photoluminescent spherical self-assembly was prepared by the self-organization of a tyrosine-containing bolaamphiphile molecule with a photosensitizer and Tb3+ ion. The lanthanide ion, Tb3+, electrically bound to the carboxyl group of the bolaamphiphile molecule, was displaced by alkali and alkaline earth metal cations that had stronger electrophilicity. The PL of the self-assembly decayed remarkably due to the substitution of lanthanide ions with alkali and alkaline earth metal cations. The PL decay showed a positive correlation with cation concentration and was sensitive to the cation valency. Generally, the PL decay was enhanced by the electrophilicity of the cations. However, Ca2+ showed greater PL decay than Mg2+ because Ca2+ could create various complexes with the carboxyl groups of the bolaamphiphile molecule. Microscopic and spectroscopic investigations were conducted to study the photon energy transfer and displacement of Tb3+ by the cation exchange. This study demonstrated that the PL decay by the displacement of the ionic fluorescent compound was applied to the detection of various cations in aqueous media and is applicable to the development of future optical sensors.
Keywords :
cation , Photoluminescence , SELF-ASSEMBLY , Bolaamphiphile
Journal title :
Colloids and Surfaces B Biointerfaces
Serial Year :
2014
Journal title :
Colloids and Surfaces B Biointerfaces
Record number :
1978415
Link To Document :
بازگشت