Author/Authors :
Du، نويسنده , , Rong-Fu Xiao، نويسنده , , Haihua and Guo، نويسنده , , Guannan and Jiang، نويسنده , , Bin and Yan، نويسنده , , Xing and Li، نويسنده , , Wenliang and Yang، نويسنده , , Xiaoguang and Zhang، نويسنده , , Yu and Li، نويسنده , , Yuxin and Jing، نويسنده , , Xiabin، نويسنده ,
Abstract :
A photosensitive platinum(IV) prodrug (UVA-Pt2) was attached to a biodegradable polymer (PE, methoxyl-poly(ethylene glycol)-block-poly(lactide-co-2-methyl-2-carboxyl-propylene carbonate-ethanol amine)) and then the conjugate was self-assembled to micelles (NP-UVA-Pt2). In vitro MTT assay of NP-UVA-Pt2 demonstrated an improved cytotoxicity against SKOV-3 cells than that of cisplatin. Confocal laser scanning microscopy (CLSM) indicated that NP-UVA-Pt2 were endocytosed rather than internalized by passive diffusion, and thus, this process has nothing to do with copper transporter protein (Ctr1) as reported for cisplatin, which is closely related to drug resistance of Pt based drugs. Intracellular platinum content measured by ICP-MS result suggested that NP-UVA-Pt2 expressed higher platinum intracellular uptake than cisplatin. NP-UVA-Pt2 demonstrated fast and robust response to photo irradiation while the nanoparticles were stable in PBS at PH7.4 in the dark. The great drug efficacy of NP-UVA-Pt2 under UVA irradiation and the ineffectiveness in the dark makes NP-UVA-Pt2 an ideal light responsive on-demand drug delivery system. Hence, NP-UVA-Pt2 will be a promising platinum based drug in the near future.