Title of article :
Application of Rapid Visco Analyser (RVA) viscograms and chemometrics for maize hardness characterisation
Author/Authors :
A. and Guelpa، نويسنده , , Anina and Bevilacqua، نويسنده , , Marta and Marini، نويسنده , , Federico and O’Kennedy، نويسنده , , Kim and Geladi، نويسنده , , Paul W. Manley، نويسنده , , Marena، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2015
Pages :
8
From page :
1220
To page :
1227
Abstract :
It has been established in this study that the Rapid Visco Analyser (RVA) can describe maize hardness, irrespective of the RVA profile, when used in association with appropriate multivariate data analysis techniques. Therefore, the RVA can complement or replace current and/or conventional methods as a hardness descriptor. Hardness modelling based on RVA viscograms was carried out using seven conventional hardness methods (hectoliter mass (HLM), hundred kernel mass (HKM), particle size index (PSI), percentage vitreous endosperm (%VE), protein content, percentage chop (%chop) and near infrared (NIR) spectroscopy) as references and three different RVA profiles (hard, soft and standard) as predictors. An approach using locally weighted partial least squares (LW-PLS) was followed to build the regression models. The resulted prediction errors (root mean square error of cross-validation (RMSECV) and root mean square error of prediction (RMSEP)) for the quantification of hardness values were always lower or in the same order of the laboratory error of the reference method.
Keywords :
white maize , Maize hardness , Milling quality , Rapid Visco Analyser (RVA) , Conventional hardness methods , Chemometrics , Locally weighted partial least squares (LW-PLS) regression
Journal title :
Food Chemistry
Serial Year :
2015
Journal title :
Food Chemistry
Record number :
1980268
Link To Document :
بازگشت