Author/Authors :
Enders، نويسنده , , S. and Hنntzschel، نويسنده , , D.، نويسنده ,
Abstract :
The paper deals with the application of the micelle formation theory, developed by Nagarajan and Ruckenstein [R. Nagarajan, E. Ruckenstein, Langmuir 7 (1991) 2934–2969] and Nagarajan [R. Nagarajan, in: K. Esumi (Ed.), Structure–Performance Relationships in Surfactants, Dekker, New York, 1997, pp. 1–81; R. Nagarajan, Adv. Colloid Interface Sci. 26 (1986) 205-264] to various n-alkyl-β-d-glucopyranoside surfactants, differing in the surfactant tail length (n-octyl-β-d-glucopyranoside C8G1, n-decyl-β-d-glucopyranoside C10G1 and dodecyl-β-d-glucopyranoside C12G1). The model predicts that the carbohydrate surfactant molecules assemble for energetic reasons in spherical bilayer vesicles. The critical micellar concentration as function of the temperature shows a minimum value. The formed micellar aggregates exhibit a broad distribution of sizes. It is demonstrated in this study that the thermodynamic theory in combination with phase separation thermodynamics can be used successfully to described the phase separation, which occurs for the system C10G1+water and C12G1+water at low surfactant concentrations.
Keywords :
Gibbs energy , Liquid–liquid equilibria , Mixture , Surfactant solution