Title of article :
Reversibility of a module with respect to the bifunctors Hom and Rej
Author/Authors :
Tolooei، Yaser نويسنده Isfahan University of Technology , , Vedadi، Mohammad Reza نويسنده Isfahan University of Technology ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2014
Abstract :
Let $M_R$ be a non-zero
module and ${\mathcal F}: \sigma[M_R]\times \sigma[M_R]
\rightarrow$ Mod-$\Bbb{Z}$ a bifunctor. The
$\mathcal{F}$-reversibility of $M$ is defined by ${\mathcal
F}(X,Y)=0 \Rightarrow {\mathcal F}(Y,X)=0$ for all non-zero $X,Y$
in $\sigma[M_R]$. Hom (resp. Rej)-reversibility of $M$ is
characterized in different ways. Among other things, it is shown
that $R_R$ {\rm($_RR$)} is Hom-reversible if and only if $R =
\bigoplus_{i=1}^n R_i$ such that each $R_i$ is a perfect ring with
a unique simple module (up to isomorphism). In particular, for a
duo ring, the concepts of perfectness and Hom-reversibility
coincide.
Journal title :
Bulletin of the Iranian Mathematical Society
Journal title :
Bulletin of the Iranian Mathematical Society