Abstract :
For a polynomial $p(z)=a_nz^n+\sum_{\nu=\mu}^na_{n-\nu}z^{n-\nu},\
1\leq \mu\leq n$ of degree $n$, having all zeros in $|z|\leq k,\
k\leq 1$, Dewan et al [K. K. Dewan, N. Singh and A. Mir, Extension
of some polynomial inequalities to the polar derivative, J. Math.
Anal. Appl. 352 (2009) 807-815] proved that
$$
\max_{|z|=1}|D_{\alpha}p(z)|\geq
\frac{n}{1+k^{\mu}}\{ (|\alpha|-A_{\mu})
\max_{|z|=1}|p(z)|+ \frac{|\alpha|k^{\mu}+A_{\mu}}{k^n}
\min_{|z|=k}|p(z)|\},
$$
where $|\alpha|\geq k^{\mu}$ and $ A_{\mu}= \frac{n(\mid
a_{n}\mid-\frac{m}{k^{n}}) k^{2 \mu}+\mu \mid a_{n- \mu}\mid k^{\mu
-1}}{n(\mid a_{n}\mid-\frac{m}{k^{n}})\mid k^{\mu -1}+\mu \mid a_{n-
\mu}\mid}.$ In this paper we improve and extend the above
inequality. Our result generalizes certain well-known polynomial
inequalities.