Title of article :
Prediction of the Hildebrand parameter of various solvents using linear and nonlinear approaches
Author/Authors :
Goodarzi، نويسنده , , Mohammad and Duchowicz، نويسنده , , Pablo R. and Freitas، نويسنده , , Matheus P. and Fernلndez، نويسنده , , Francisco M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
7
From page :
130
To page :
136
Abstract :
The Hildebrand solubility parameter (δ) provides a numerical estimate of the degree of interaction between materials, and can be a good indication of solubility. In this work, a small number of physicochemical variables were appropriately selected from a pool of Dragon descriptors and correlated with the Hildebrand thermodynamic parameter of compounds previously studied as organic solvents of buckminsterfullerene (C60), using multiple linear regression and support vector machines. Models were validated using an external set of compounds and the statistical parameters obtained revealed the high prediction performance of all models, especially the one based on nonlinear regression. These findings provide useful information about which solvent and corresponding characteristics are important for solubility studies of e.g. this increasingly useful carbon allotrope.
Keywords :
QSPR , Artificial neural networks , Hildebrand parameter , Fullerene
Journal title :
Fluid Phase Equilibria
Serial Year :
2010
Journal title :
Fluid Phase Equilibria
Record number :
1987914
Link To Document :
بازگشت