Title of article :
Infinite-Dimensional Prolongation Structures for the Robinson–Trautman Type III Metric
Author/Authors :
BERRY I. IFIDON، نويسنده , , E.O. and Oghre، نويسنده , , E.O.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
10
From page :
353
To page :
362
Abstract :
The universal covering symmetry algebra of the Robinson–Trautman equations of Petrov Type III is shown to include the infinite-dimensional Lie algebra A2⊕C[λ−1, λ], the loop algebra over A2. This algebra has slower growth than the contragradient algebra K2 obtained previously for this metric by other authors.
Keywords :
Robinson–Trautman equation , Kac-Moody algebra , contragradient algebra , Wahlquist and Estabrook prolongation , infinite-dimensional Lie algebra
Journal title :
Reports on Mathematical Physics
Serial Year :
2013
Journal title :
Reports on Mathematical Physics
Record number :
1990562
Link To Document :
بازگشت