Title of article
Low molecular weight organic acid adsorption in forest soils: effects on soil solution concentrations and biodegradation rates
Author/Authors
van Hees، نويسنده , , P.A.W. and Vinogradoff، نويسنده , , S.I. and Edwards، نويسنده , , A.C. and Godbold، نويسنده , , D.L and Jones، نويسنده , , D.L.، نويسنده ,
Pages
12
From page
1015
To page
1026
Abstract
Low molecular weight (LMW) organic acids are believed to play a key role in many rhizosphere and pedogenic processes; However, their efficiency is likely to depend on their susceptibility to sorption and biodegradation. The sorption characteristics of three organic acids (citrate, oxalate and acetate) and phosphate were examined over the concentration range 0–1000 μM in three coniferous forest soil profiles. Sorption to the soilʹs solid phase could be adequately described by the Langmuir equation with sorption capacity following the horizon series: B>C>E>O. The strength of anion sorption followed the series: phosphate>oxalate≥citrate≫acetate. Calculations indicated that between 50 and 95% (O and E horizons) and >93% (B horizons) of these LMW organic acids entering the soil will become sorbed to the solid phase. The amount of organic acids predicted to be present on the solid phase at typical soil solution concentrations ranged from <1 to 1100 nmol g−1 yielding adsorbed-to-solution ratios (adsorption coefficients) of between <0.1 and 3100. In the case of citrate, sorption to the solid phase significantly reduced its biodegradation potential by 35–99% depending upon the degree and type of sorption surface. The findings of this work are discussed in the context of the quantitative effects of adsorption on organic acids, their ecological functions and role in soil forming processes.
Keywords
Citrate , Oxalate , organic acids , PODZOLS , Phosphate , Adsorption , forest soil , Biodegradation
Journal title
Astroparticle Physics
Record number
1994261
Link To Document