Title of article :
Soil microbial biomass, activity and potential nitrogen mineralization in a pasture: Impact of stock camping activity
Author/Authors :
Kannan Iyyemperumal، نويسنده , , Kannan and Israel، نويسنده , , Daniel W. and Shi، نويسنده , , Wei، نويسنده ,
Pages :
9
From page :
149
To page :
157
Abstract :
Grazing animals recycle a large fraction of ingested C and N within a pasture ecosystem, but the redistribution of C and N via animal excreta is often heterogeneous, being highest in stock camping areas, i.e., near shade and watering sources. This non-uniform distribution of animal excreta may modify soil physical and chemical attributes, and likely affect microbial community eco-physiology and soil N cycling. We determined microbial population size, activity, N mineralization, and nitrification in areas of a pasture with different intensity of animal excretal deposits (i.e., stock camping, open grazing and non-grazing areas). The pasture was cropped with coastal bermudagrass (Cynodon dactylon L.) and subjected to grazing by cattle for 4 y. Soil microbial biomass, activity and N transformations were significantly higher at 0–5 cm than at 5–15 cm soil depth, and the impacts of heterogeneous distribution of animal excreta were more pronounced in the uppermost soil layer. Microbial biomass, activity and potential net N mineralization were greater in stock camping areas and were significantly correlated (r2≈0.50, P<0.05) with the associated changes in total soil C and N. However, gross N mineralization and nitrification potential tended to be lower in stock camping areas than in the open grazing areas. The lower gross N mineralization, combined with greater net N mineralization in stock camping areas, implied that microbial N immobilization was lower in those areas than in the other areas. This negative association between microbial N immobilization and soil C is inconsistent with a bulk of publications showing that microbial N immobilization was positively related to the amount of soil C. We hypothesized that the negative correlation was due to microbial direct utilization of soluble organic N and/or changes in microbial community composition towards active fungi dominance in stock camping areas.
Keywords :
Pasture , Stock camping activity , Microbial biomass , mineralization , Nitrification
Journal title :
Astroparticle Physics
Record number :
1996573
Link To Document :
بازگشت